注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

shuijisanqianli的博客

自信人生二百年,会当水击三千里

 
 
 

日志

 
 
关于我

自信人生二百年,会当水击三千里。

文章分类
网易考拉推荐

【转载】氢键  

2014-10-10 19:41:19|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
本文转载自混世魔王《氢键》
氢键
一、氢键的形成

1、同种分子之间
现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有孤电子对并带部分负电荷的F原子有可能充分靠近它,从而产生静电吸引作用。这个静电吸引作用力就是所谓氢键。

2、不同种分子之间
不仅同种分子之间可以存在氢键,某些不同种分子之间也可能形成氢键。例如 NH3与H2O之间。

3、氢键形成的条件
⑴ 与电负性很大的原子A 形成强极性键的氢原子 。

⑵ 较小半径、较大电负性、含孤电子对、带有部分负电荷的原子B (F、O、N)
氢键的本质: 强极性键(A-H)上的氢核, 与电负性很大的、含孤电子对并带有部分负电荷的原子B之间的静电引力。

⑶ 表示氢键结合的通式
氢键结合的情况如果写成通式,可用X-H…Y①表示。式中X和Y代表F,O,N等电负性大而原子半径较小的非金属原子。
X和Y可以是两种相同的元素,也可以是两种不同的元素。

⑷ 对氢键的理解
氢键存在虽然很普遍,对它的研究也在逐步深入,但是人们对氢键的定义至今仍有两种不同的理解。
第一种把X-H…Y整个结构叫氢键,因此氢键的键长就是指X与Y之间的距离,例如F-H…F的键长为255pm。
第二种把H…Y叫做氢键,这样H…F之间的距离163pm才算是氢键的键长。这种差别,我们在选用氢键键长数据时要加以注意。
不过,对氢键键能的理解上是一致的,都是指把X-H…Y-H分解成为HX和HY所需的能量。

(5)氢键的饱和性和方向性
氢键不同于范德华引力,它具有饱和性和方向性。由于氢原子特别小而原子A和B比较大,所以A—H中的氢原子只能和一个B原子结合形成氢键。同时由于负离子之间的相互排斥,另一个电负性大的原子B′就难于再接近氢原子。这就是氢键的饱和性。
氢键具有方向性则是由于电偶极矩A—H与原于B的相互作用,只有当A—H---B在同一条直线上时最强,同时原子B一般含有未共用电子对,在可能范围内氢键的方向和未共用电子对的对称轴一致,这样可使原于B中负电荷分布最多的部分最接近氢原子,这样形成的氢键最稳定。


二、氢键的强度
氢键的牢固程度——键强度也可以用键能来表示。粗略而言,氢键键能是指每拆开单位物质的量的H…Y键所需的能量。氢键的键能一般在42kJ·mol-1以下,比共价键的键能小得多,而与分子间力更为接近些。例如, 水分子中共价键与氢键的键能是不同的。
而且,氢键的形成和破坏所需的活化能也小,加之其形成的空间条件较易出现,所以在物质不断运动情况下,氢键可以不断形成和断裂。

三、分子内氢键
某些分子内,例如HNO3、邻硝基苯酚分子可以形成分子内氢键。分子内氢键由于受环状结构的限制,X-H…Y往往不能在同一直线上。

四、氢键形成对物质性质的影响
氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF中都有氢键存在。能够形成氢键的物质是很多的,如水、水合物、氨合物、无机酸和某些有机化合物。氢键的存在,影响到物质的某些性质。

1、熔点、沸点
分子间有氢键的物质熔化或气化时,除了要克服纯粹的分子间力外,还必须提高温度,额外地供应一份能量来破坏分子间的氢键,所以这些物质的熔点、沸点比同系列氢化物的熔点、沸点高。分子内生成氢键,熔、沸点常降低。例如有分子内氢键的邻硝基苯酚熔点(45℃)比有分子间氢键的间位熔点(96℃)和对位熔点(114℃)都低。

2、溶解度
在极性溶剂中,如果溶质分子与溶剂分子之间可以形成氢键,则溶质的溶解度增大。HF和HN3在水中的溶解度比较大,就是这个缘故。

3、粘度
分子间有氢键的液体,一般粘度较大。例如甘油、磷酸、浓硫酸等多羟基化合物,由于分子间可形成众多的氢键,这些物质通常为粘稠状液体。

4、密度
液体分子间若形成氢键,有可能发生缔合现象,例如液态HF,在通常条件下,除了正常简单的HF分子外,还有通过氢键联系在一起的复杂分子(HF)n。 nHF(HF)n 。其中n可以是2,3,4…。这种由若干个简单分子联成复杂分子而又不会改变原物质化学性质的现象,称为分子缔合。分子缔合的结果会影响液体的密度。

5、氢键形成对物质性质的影响
分子间氢键使物质的熔点(m.p)、沸点(b.p)、溶解度(S)增加,分子内氢键对物质的影响则反之

氢键是指分子中与电负性很大的原子X以共价键相连的H原子和另一分子中的一个电负性很大的原子Y之间形成的一种弱键:X—H…Y。X,Y最常见的为F,O,N,有时可为Cl,S等。当H原子与X共价结合时,由于X电负性很大,强烈吸引价电子,使H带部分正电荷,这个半径很小的H与有孤对电子而电负性较强的Y原子接触时,既有静电作用,又有共价作用而形成氢键。

氢键有以下特点:①键能在10~40kJ·mol-1范围内,因此远比化学键弱,却比范德华力稍强的键。氢键键长是指X到Y的距离,它比共价键键长大得多,但是比范德华半径之和要小。②具有方向性和饱和性:形成氢键的3个原子中X与Y尽量远离,其键角常在120°~180°,H的配位数为2。

氢键的存在使水具有很多反常性质。例如凝结成冰时的反常膨胀,沸点高,密度大,热容量大。氢键不仅能存在于分子间,也能存在于分子内。如邻-硝基苯酚通过分子内氢键形成一个闭合二员环: 结果它的沸点(45℃)比对位或间位的硝基苯酚(96°或114℃)要低,在水中的溶解度也较小。氢键的存在相当普遍,从水、醇、酚、酸、碱及胺等小分子到复杂的蛋白质等生物大分子都可形成氢键。氢键的存在直接影响分子的结构,构象、性质与功能,因此研究氢键对认识物质具有特殊的意义。

回答者:jamasiy - 试用期 一级 1-28 16:17

2236432 - 初入江湖 三级 1-28 16:26

氢键的键能

氢键形成时所放出的能量,称为氢键的键能。氢键键能的大小,与X和Y的电负性大小有关,电负性越大,则氢键越强,键能也越大;氢键键能也与Y原子的半径大小有关,半径越小,则越能接近X—H,因此,氢键越强,键能越大。例如,F的电负性最大而半径很小,所以,F—H…F是最强的氢键,O—H…O次之,O—H…N又次之,N—H…N更次之,而C—H一般不能构成氢键。Cl的电负性虽颇大,但因为它的原子半径也大,所以氢键O—H…Cl很弱,下表列出了一些常见氢键的键能。

一些常见氢键的键能

氢键

键能/kJ·mol-1

例子

F—H…F

28

(HF)n

O—H…O

19

冰、H2O2

O—H…O

26

CH3OH、C2H5OH

O—H…O

29

(HCOOH)2

O—H…O

34

(CH3COOH)2

N—H…F

21

NH4F

N—H…N

5.4

NH3

在固体时便是以氧为中心加另外两个水上的氢以氢键构成正四面体, 就像金刚石一样. 这个也可以解释为什么冰的体积比水大根据物质的热涨冷缩来说,冰中水分子间距离要比水中水分子间距离小,这样一个水分子中氧对另一个水分子中氢的吸引力就大,氢键也就强
水在0-4℃时会有冷涨热缩现象,是因为氢键多了水分子排的比较规则,分子间的距离仍然还是在减小的

  评论这张
 
阅读(76)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017